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Abstract-Based upon the Stroh formalism for anisotropic elastic materials and upon the method
of eigenfunction e1l.pansion. the stress redistribution due to delamination cracks originating from
transverse cracking is e1l.amined from [90.0). ;lOd [01901. laminates under e1l.tension. The structure
of the solution. in the form of a series e1l.pansion. is determined from the eigenvalue equation
resulting from appropriate near-field conditions. Toc(lmplcte the s(llution. use is made ofa Iwundary
c(lllocation technique in conjunction with the eigenfunction series that includes a large number (If
terms. enllugh t(l represent the clastic state throughout the appropriate domain concerned. The
fr;lcture mech;mics par;lmeters. such as stress mtensity factors and energy release r;lles. arc calculated
and the majN ch;lraetcristics of stress distribution arc discussed. The stability of delamination
cracks is e1l.;lmincd for varying rati(ls (If ply thIckness in terms I,f the energy release rate.

I. INTRODUCTION

Fr.tcture analysis of an anisotropic composite laminate has gained suhstantial attention in
.tssociation with the understanding of its fundamental fracture hehavior. which is of critical
importance for the design of composite structures. In particular. tr.tnsverse cracking and
delamination fracture have heen .Imong the suhjects under intensive investigation during
the last two decades. for cxample. stress singularities were first reported hy Ting and Hoang
(19~4) for transverse cracks. and Wang and Choi (19!Oa) treated delamination cracks in
'Inisotropic compositc laminates. Various prohlems conccrning transverse cracking and
delamination damage. including crack initiation and growth. stiffness reduction and other
changes of structural properties. have been discusscd by many researchers; the number of
works along this line is too great to give individual citation herein. Many important
contributions may be found in the thesis by Lim (19S8). for example.

Recently. the asymptotic stress field near transverse cracks occurring in the 90' ply of
cross-ply laminates was examined by 1m (19S9) and 1m and Kim (19S9). As the load
increases. the transverse cracks in the 90 ply of a cross-ply laminate that arc arrested at
the interface tend to kink into the delamination cracks along the ply interface (Lim. 1988).
The purpose of this work is to obtain the stress redistribution under extension in the
presence of such interfacial cracks originating from transverse cracking. and to examine
the fracture behavior. including the stability of delamination cracks and the influence of
geometric parameters. It is assumed that these interface cracks run through the width of a
laminate. with a uniform spacing and crack length. The asymptotic structure of the solution
is obtained. under the assumption or plane strain elasticity. from the Stroh formalism of
.tnisotropic elasticity and the eigenfunction expansion [see Ting (1986) or references
therein]; appropriate near-field conditions are imposed to lead to the eigenvalue equations.
which determine the structure of the asymptotic solution. including the stress singularity.
To complete the solution. use is then made 01'.1 boundary colloc'ltion technique in con
junction with the eigenrunction series that includes a large number of terms. enough to
cover the elastic state of the far field as well as of the ncar field. The convergence behavior
or the solution. including the influence of the numher or eigenvalues truncated in the
series solution and the number of collocation stations. is demonstrated through numerical
examples and the role of the two translational planar rigid body modes. in association with
the solution accuracy. is critically examined. The characteristics of the singular stress field
near the crack tip are briefly discussed for [90/0]. and [0/90].. respectively; under the given
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loading of extension. the delamination crack turns \)ut to be opened for [90 0]. laminates.
while [090], laminates are found to have a fully do~ed delamination crack. For the opened
delamination crack in [90 OJ, laminatt:s which ha~ an o~cillatory singularity. the stress
intensity for an interfacial crack using the analogy of linear elastic fracture mechanics. as
proposed by Rice (1988). is computed. The effect of ply thickness is assessed in terms of
the energy release rate. and the stability of delamination cracks is examined under a fixed
load condition.

~. STATEME:\T OF THE PROBLE,\I A:"D BASIC EQh\TIO:\S

Consider the two types of cross-ply cl1 mposite laminate. [90 OJ- and [0 90).. subjected
to extension. As the load increases. there will occur numerous transverse cracks running
parallel to the fiber orientation of the 90 ply. with an approximately uniform spacing along
the length of the laminates. These cracks. terminating perpendicular to the ply interface
because of the stronger 0 ply. tend to develop into delamination cracks along the interface
as the load increases further. Figure I is typical of such delamination cracks originating
from transverse cracking (Lim. 1988). [t is noticed that the cracks run through the width
of a laminate. We will examine the stress redistribution in the laminate due to the presence
of such interfacial cracks under extensional loading. To simplify the probkm. we assume
that the cracks arc uniformly ammged with the configuration symmetric about the mid
plane. as shown in Fig. 2. so that the lnerall arrangement is ohtained hy repetition of the
representative unit cell.

We take a rectangular Cartesian coordinate ~ystem with the \Irigin at one of the crack
tips. We choose the XI axis to be along the length of the composite laminates or along the
loading direl.:tion. while the\': axis is taken to he along the diredion of the laminate
thil.:kness. ,Ind lhen the.\', axis is along the laminale width. whidl is parallel to the eral.:ks
(sec Fig. 2). Eadl ply or the wmposite Iaminatcs lies in a plane par,dlcl to the X, x, plane.
and the ply orientation /I is dclined to be the counter-clockwise angle. viewed from above.
that the liber direl.:lion makes with the XI axis. We assume that the laminate dimension in
the .\' I direl.:tion (laminate width) is suflil.:iently large wmpared with the hUllinate thickness.
and that the laminate is assumed to be in the state of plane strain on the XI~X: plane.

The plane problems of a wmposite body wmprising isotropic materials. induding
stress distribution around l.:omposite wedges. were treated by many researchers. e.g. Zak
and Williams (llJ63). Bogy (llJ71), Cook and Erdogan (llJ72) and Dempsey and Sinclair
(l97lJ). For an anisotropil.: wmposite body. the out-of-plane displal.:ement is in general
nonzero due to the assol.:iated l.:Ollpling in the stress -strain relation. This is so even when
the normal strain in the out-of-plane diredion is assumed to be zero (which is the case
for deformations th,lt depend upon only the two coordinates on the plane). Among the
approaches in analyzing such elastil.: dd'ormations, Lekhnitskii's wmp!l:x potentials were
used by Wang and Choi and their associates [e.g. Wang and Clllli (llJS2). Wang and
Yuan (!lJH3)j to examine the boundary-layer ctrcet in the free-edge problem. Ting and his
associates. on the other hand. used Stroh's approadl (Stroh. 1%2) to treat the stress
singularities ncar various ,Inisotropic l.:omposite wedges and cracks [Ting (19S6) and
references cited therein). This approadl has the adv,antage. as shown by Ting (19X6). that
itlcads to a simple and neat formulation of problems in anisotropic elasticity. Due to such
an advantage. we use the Stroh formalism to determine the strUl.:ture of the solution for the
present problem.

Let II" e'l and a" denote the c.lrtesi~m components of displacement. strain and stress.
respectively. For deformations that depend upon two coordinates XI and X~ only. we: have
the governing equations:

Equilibrium equation. ad,1 +a,;,; = 0 (no body force),

Strain-displacement relation. e" == (11',1 + 11/,,). 2.

(I a)

(! b)

( Ic)
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IIg. I. TYPical dd~lllllll~llHlIl cracks originaling frllll1lranSVcrsc cr;u.:killg (Lim, l'/ss) (while "reas
reprcselll thc Jdarninallllll /llllC and s,llid lines Ihe tr"thVCrsc cracks).
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hit. :!. Dc!amin'llinn cracks l.nltin;llinlt from Ir,lnsvcrsc crackinlt in ('JO/OI, ami [0/901, (r." .", Ii/h).

19:!9

where ('"., arc the fourth-order stiffness tensors, and the comma indicates partial diner
entiation with respect to X,. Introducing the "collapsed" representation. we m.IY write the
stress strain relation as

a, == C,//. I:, == 8"a,. (2a.b)

where

al a I I I; I ell

(T1 (111 /';1 £11

(Tj (T3j Ej Ejj
(2c.d)== ==

(T4 a 1 j E4 2E!J

as a, .1 I; s 21: I j

(Tb (T I! Eb 21:11

and e"and 5" are the stiffness and the compliance matrix. For orthotropic materials like
[90/01, and [0/901, laminates. we have

(3)

For such materials. the displacement component 11.\ is decouplcd from III. liz. and the plane
strain assumption C.1Il he made for extension along the x, .\Xis. as in the present deformation.
Following Ting and Chou (19R I). we can show that the general solution takes the form for
the present problem.
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LI, = L. 1',,,1.(=..). =. = XI +fl.X~ (k = 1.1.3.4).
•.~ I

(4a.b)

(5a.b)

where the Greek letters :x. II. ;' take the value I or 1. and summation is implied on repeated
Greek indices only; IL. are the eigenvalues to be determined. and j~(=d is a function of =•.
Substituting eqns (5a.b) into eqn (Ia). we obtain the equations:

D,/I(JL..)I'/I' = O.

D'II(JL..) = e,I/11 +ILde'lfl~+eX~/IJl+ILfC,:II>

For the existence of nontrivial solutions. we have

(6a.b)

and the solutions of this quartic equation yield the two pairs of complex conjugate eigen
values (Stroh. 19(2).

(L,,: = IL, (:x = 1.2). (~)

The associated eigenvector /'/1. can now be obtained from (6a) through a proper normal
ization. Using the collapsed symmetry relation (3). we obtain the explicit expression for
eqn (7)

(9)

The four eigenvalues IL, appear as two pairs of complex conjugates. and they arc purely
imaginary if the inequality

holds among the stiffness wmponents e'l; otherwise they have a nonzero real part. For the
advanced tibrous I:omposite materials such as graphite epoxy and boron epoxy. the above
ineqlwlity holds and therefore the values of IL, are assumed to be purely imaginary here
aftt:r. It is worthwhile 10 nOle Ilml Ihese lour eigenvalues IL. are the constants that make eqn
(4b) Ihe wmplcx I:haracteristll:s uf the governing elliptic partial differential equation for
Lekhnitskii's complex stress potential (Lekhnitskii. 1963).

3 ASYMPTOTIC EIGENFUNCTION EXPANSION AND

BOUNDARY COLLOCATION SOLUTION

In this section. the ,Isymptotic eigenfunction expansion for the function j~(='> is exam
ined ncar the delamination I:rack tip. and usc is made of this expansion to obtain the
complete numerical solution with the ,lid of the boundary collocation method. We assume
a power-type eigenfunction for j~(:d as given by (Wang and Choi. 1982; Ting. 1986)

j~(:d = L. e",=t·+ I/(J.+ I).
.- I

which leads to the expression for the displacement and "tress field

( 10)
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( Ila)

(II b)

where the superscript m = I. 2 indicates the upper and the lower ply, respectively. Here the
eigenvalues {in are to be determined from the so-called "near-field" conditions around the
crack tip. induding the traction or displacement conditions on the crack surface and on the
ply interface. The coetlicient Cn is dependent upon the associated eigenvalues <>n. and can
be determined within an arbitrary constant when <>" is obtained.

We assume that there is no friction on the delamination crack surface and that the two
plies are rigidly bonded along the rest of the ply interface. Then the near-field conditions
for the present case may be written as

(on the crack surface, x I ~ 0), (12)

(on the interface, Xl ~ 0). ( 14a,b)

where the bracket [el denotes the discontinuity of the quantity in it ,ICroSS the ply interface,
e.g. [",~~(.\·,.Oll = ".I~I!(XI.O·)_".I/!(XI'O ). The tirst condition in eqn (12) is valid for the
opened region of the crack surf'lce and the latter is for the closed region, Substituting the
expressions for displacement ,Inti stress (II) into the above near-tiekl conditions. we obtain
a system of Xx X homogeneous linear equations:

d"U>")I1,,,=() (i.j=IX). B.,,=C1~'. BlkH1" = C1;,) (k=I-4), (15a)

For the existence of nontrivial solutions, we have

!A,,(<>,,)! =0, (ISb)

which determines the eigenvalues <>". When the eigenvalues D" are known. within unknown
constants the eigenvectors C,,, arc computed from eqn (1541) and the asymptotic form of the
solutions for the stress and displacement is given by eqns (1Ia,b). From the structure of
d,,(i5,,). we can show that if i5" is a root of the characteristic equation. so is its complex
conjugate 5". and the expressions (1Ia.b) for the stress and displacement become real. To
take only the real part of eqns (11,I,b) for convenience. we may introduce

( 16)

where ht~' is the solution of cqn (1541), computed by a proper normalization, and}' I •• '12"
and ;". arc const'll1ts to be determined to complete the solution. The expressions for the
stress and displacement (II a.b) are then written as

(

1 1m) = ~ QfmJ
I.. 1-,,'1 •

11,,",1

where Q~';I and P~;h arc given by

"T.

(1lm) _ " rim)
xii - L. r n,ll.-1 (m = 1.2), (l7a.b)
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,I. =" [Nm,l""" _'ml".· I + h,ml i"m, .=1 m ".,' I] () + I)0/ f11 ~ 4." J.A -It 1.4: ~ ~ln 111 -I" i...'1 4

'~I

-
A.. =' [hlmjr!ml_~mki"'+h(mj.. fi'~I:!ml'}"]
0/,,1/1 L k.n ll/k. -ll J.4:- .;.. _In "l1l4'-1(

.=1

if c5" is complex.. or

Q'm, =" R.> [~ h'''t1l·'ml_'''''i,,~ I (." + I)J
rt2 I J,., .... L- J,;", lk -k Un

k~1

and

The unknown constants 7", can be determined by matching the asymptotic expressions with
the far-lield conditions (the conditions at the remote boundary) through the boundary
collocation technique (Wang and ('hoi. 19Ci2). or through speciallinite element methods in
which the present asymptotic solutions arc embedded in a singular crack tip clement (Wang
and Yuan. 19X]). or in which the asymptotic solutions arc introduced over the entire domain
(Stol"rski and Chiang. 19XIJ). E.xtensive lists of the literature on the boundary collocation
methods and the speciallinite clelllenttechniques may be found in Chung (19XX) and Atluri
and Nak;'lgaki (1986). We usc the oound;'lry collocation technique for the present problem
here because of its simplicity. A brief description of this technique is given in Appendix A
for sclf-sulliciency of the present development. and for details the readers may be referred
to Wang and ('hoi (llJX2).

The power-type expansion (10) 1~lils to be complete when the algebraic multiplicity is
greater than the geometric multiplidty. that is. there arc not enough sets of power-type
eigenvectors associateJ with these multiple eigenvalues [sec Dempsey and Sinclair (1979).
Ting ;,lI1d Chou (19M I) anJ the references citeJ therein]. Dempsey and Sinclair (1979)
resolved this ditliculty by introdudng logarithmic eigenfunctions. which ensure the existence
of the sets of eigenvectors. enough to span the solution. Subsequently this was extended to
the problem of anisotropic composite laminates by Ting and Chou (1981). The existence
of the logarithmic eigenfunctions can be examined by calculating the algebraic multiplicity
of the eigenvalues and the rank of the associated coefficient matrices lli/(t>.) in (15).

An essential prerequisite for the success of the aforementioned boundary collocation
technique is that the asymptotic representation (17a.b) should be complete in the sense that
it can represent the elastic field over the entire domain concerned. including the far-field
region as well as the ne<lr-ticld region. For example. the present boundary collocation
method is ditlkult to apply if there is <lnother singular region or a strung bound<lry layer
in the f<lr tield. which the eigenfunction expansion (17a.b) fails to represent; for the single
expression for the elastic state valid throughout the entire domain is not <lv;'lilable. For such
<I c<lse. we m<lY usc the hybrid F.E.M. wherein e;,\ch singular or bound<lry-layer region is
modeled as.1 speci<ll element into which the <lssoci<lted <lsymptotic solution is incorporated.
or the enriched F.E.M. wherein the <lsymptotic solutions arc defined over the entire domain.
Roughly spe<lking. we can approximate the far field by retaining a sutlicient number of
terms in the ne'lr-tield eigenfunction series. as long as the asymptotic eigenfunction series
is complete in the ne<lr field <lnd there are no strong boundary I<lyers other than the ncar
field singul:.tr region. For such cases. we in general h:.tve no dillkulties in applying the
boundary collocation method in conjunction with the asymptotic representation in the ncar
field.
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Anothe:r important issue: related to the completeness is the treatment of rigid body
mode:s. If only traction conditions are involved in the remote boundary. sudi as in the free
edge proble:ms (Wang and Choi. 1982). we exclude rigid body modes from the eigenfunction
representation because: the:y are indeterminate under traction boundary conditions. If there
are. however. any displacement boundary conditions involved in the remote boundary.
which is the case for the prese:nt problem. we have to incorporate all relevant rigid body
displacements in the asymptotic representation (1Ia); otherwise the asymptotic solution
for displacement (II a) or (17a) fails to be complete and this will lead to an inaccurate
solution. The power-type expansion (II a). however. excludes the two displacement modes
corresponding to rigid translation in the XI and X2 directions. although these rigid dis
placements are both compatible with the near-field conditions (12). (13) and (14a.b). Such
incompleteness is due to the inherent limitation of assumption (10) wherein (<>"+ I) is
introduced in the denominator and therefore the constant translational rigid displacements
are excluded. To rectify this. we modify the asymptotic solution (17a) as

x

u~,.) = L Q~:). Q~;;) = u~
,,=0

( 18)

where II~' (:x = I. 2) is the constant translational rigid displacement or the crack tip dis
placement in the x, direction. and Q::~'I (11 ~ I) is the same as before. The significance of
including these terms is apparent in the light of completeness. and their quantitative eRect
will be illustrated through numerical examples.

4. NUMERICAL RESULTS AND DISCUSSION

In this section. we determine the unknown free constants 1'1"' 1'2" and)' .111 through
boundary collocation to complete the solution. We will confirm the convcrgence of the
bound,try collol.:ation solution. and disl.:uSS the nuture of the neur-tip singulur fields in terms
of the stress intensity. und the fructure behuvior of delaminution cntl.:ks. including the
stubility of crul.:ks und the elli:cts of ply thil.:kness upon the energy releuse rutes.

For the numeril.:al computution. we use the following muterial dutu for the gruphite
epoxy T300/520~ (Whill.:omb. 19S7):

£,. = 134 GPa. £/ = E" = 10.2 GPa. Gu = Gu . = 5.52 GPu. G1/ = 3.43 GPu.

\'u = \'1.7 = 0.3. Vrz = 0.49.

To determine the free constants. we mutch the near-field solution (18) with the remote
boundary conditions through boundary collocations. Let c. U. h~lh hI) and b denote half the
l.:rack knglh. lhe displucement prescribed at the right end of the unit cell. the thickness of
the 90 and o· ply. und half the spacing of the transverse cracks. respectively (see Fig. 2).
The remOle boundury conditions for the case of [90/0]. laminates may then be written as

(19c)-hI) ~ X2 ~ h~o on the right end;

lTl d -C.X2) = lTd -C.X2) = 0 0 ~ X2 ~ h~o on the left end of the 90' ply; (19a)

lT22(."(I.II~I) = lT 12(XI. h~l) = 0 -c ~ XI ~ h-c on the top surface; (19b)

t'1I2(h-c.x 2 )
--~ =0

eX I

c"1112( - c• .\"2)
1I1( -C• .\"2) = --~:1-.--- = 0 -110 ~ X2 ~ 0 on the left end of the 0" ply. (1ge)

L\:I

For [0/90), laminates. we have similar boundary conditions. Note that the boundary con
ditions involve the prescribed displacements for III and 112' and this requires the inclusion
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of the rigid twuy modes in the c:igenfum:tion solution as in egn ( IX). We nllW truncale the
series solution (IX) to n:tain a finite numher of terms. and determine the free constants
;',,,. :,:" and ;' I" through the boundary collocations such that the resulting solution may
approximate the above remote boundary conditions in the least square sense. The detailed
procedure is outlined in Appendix A.

The resulting numerical solutions show that the delaminatil1n crack for [90 OJ. is fully
opened while it is fully closed for [0 (0)" This is consistent with the following observations:
the thickness contraction of the 0 ply dUt: to the axial stress rr,_ remains almost uniform
along the X, coordinate. whilst the thickness contraction of the 90 ply. on the other hand.
increases due to shear lag as we proceed away from the damaged lone along the x,
coordinate. Thus. for [90 OJ. laminates. wherein the 90 ply arc free from constraints on the
cxtL'rior surface. the material clements ncar the free surl~lce of the 90 ply around the
delamination region are pulled to',vard the undamaged region and this causes the crack to
lend to open. hlr [0 90J.laminates. wherein the interior 90 ply is symmetrically constrained
on the upper and lower faces hy the 0 ply. the crack face on the 90 ply is brought into
Cllnlact with the crack face of the ° ply hecause the thickness contraction of the 90 pl~

due tp axial ntension is relatively small near the delamination region compared with the
lInd:lmaged regipn.

The eigell\alues for the two types Ill' interfacial cracks are given as:

/I - ~ ± i,/ and /I fpr the ppened crack ... in [90 OJ,

and

/I - .\ and /I for the closed cr;ll.:ks in [0/90j,

(/I == 0. I, 2. .I.. " and 1/ =: 0,1).\ ... ).

NIltice that the illlagin;Il'y part of the first eigenvalue is not zero for the opened cracks of
(90 OJ, and then:fore the stress singularity is oscillatory. while the stress field near the closed
cracks uf[lJ!'JlJj, h;l~ lilC IlIvcrse square root singularity. This agrees with the results reported
in the earlier lilt:rature. e.g. Comninou (1977) and Wang and Clwi (19X3h). Taking the
singular terlll alolle in the eigenfunction expansion (17a,h). we can write the asymptotic
stress fkld ahead of the crack tip and the crack tip upening displacements as

and

rr ,/1(1'.0) = [." 'II L'llS (I/In 1') + 11'/1 sin (,/In 1')/1' I: + ...

11,(1'. rr) -11,(1', -rr) = [II, cos (I/In f)+h, sin (I/In r)jr ' : + ...

for the opened eracks in (90101,

(20a)

(20h)

I'1I,(r.rr)-/l,(r, -rr) = c,r -+ ...

for the closed cracks in (0/90]., (20c.d)

when: ",/" is the imaginary part of the stress singularity. The parameters ..1,/1. 11,/1, CII. 11,.

h, and C,. nurm;t1ized by the applied normal strain /;" = ji,,;h. are tabulated for the case
ch,", = r. hh"" = 4 and h"!h",, = I in Tahle I. The stress singularity is oscillatory for the
opened interfaL'ial cracks and therefore a physically inadmissible interpenetration occurs as
r goes to zero. To rectify such a shortcoming. Cornninou (1977) proposed a new interfacial
crack modd for dissimilar isotropic materials. wherein the partially e10sed crack faces are
in frictionless contact near the tips. and Wang and Choi (19SJb) extended such a partially
closed crack model to the case of dissimilar anisotropic materials. However. the zone of
interpenetration is negligibly small in a fully opened crack and the asymptotic stress fields
arc almost the same for hoth of the fully opened and the p;lrtially closed models (Wang
and ('hpi. 19X3h): moreover. the partially closed model also has an inconsistency that it is
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Table I. Asymptotic stress field ahe-ad of the cra.:k tip and crack tip opening
displacements

/:u = 11., h, hu, h.u = I. hu:h = 0.25. ch = 0.~5

1935

Stress tield ahead of the
cra.:k tip

a,H("O) 1:"

Cra..:k tip opening displacement
[11,('. It) -11,('. -It)]":,,

[900]. [090].

All 0611946
B II -0.93051

A" 0.91054
Boo -1.~2Sl\'1

A" 1.44074

B" 1.06751

C" O.

C" O.

C" - 1.74423

a, 0.67692
h, 0.42412
(1.: -0.7'1231
h, O.5S705
c, -0.X0514
('~ O.

a",('. 0):,:" = [.1.,. C\'S ('I In ,) + B." sin ('/ In ')1' "+'"
[I1,('.It)-II,(" -1t)1,'!:" = [a, cos (II In ,)+h. sin (,/In ,)\,' '+.

f\lr the opened cra,ks in ['10,nl•.

rr,//('.O)1:" = C./" "+ .... (11,(,.It)-ll,(" -1t)1:1:" = c,," + .
f\lr the dosed ,ra.:ks in [0:901•.

not n:dm:ed to the solution for a homogeneous body when the two plies become identical.
For such reasons. we do not seek the solution for the partially closed model here.

To characterize thc stress field near the present delamination cracks. we may use
fracture mechanics p;trameters sm:h ;tS the stress intensity factors 1\,. 1\11 and the energy
release rates G. For closed cracks in [0/\)01,. there are no dillieulties introducing the classical
stress intensity factors for this purpose. In fully opened interface cracks in [\)0/01,. however.
modes I .Ind II arc inherently coupled. and the stress intensity factor is not dclined in the
same way as in the classical fracture mechanics. One possible definition. as suggested by
Rice (I\)~S). is to define the stress intensity factor by obtaining the stress value at a specific
small distance from the crack tip. that is. for a very small value of ;.

For the present case. we take; to be e/50. Because the imaginary part of singularity ",/" is
very small ('/ = 0.03 ... ). changing the value of; within a modest range. say. an order of
a factor of 10 or less. docs not afrect the values of KI and 1\11 significantly (Rice. 1988).

To confirm the convergence of the solution. we computed the stress intensity factors
and the maximum mismatch of the remote boundary conditions. varying the number of
the eigenvalues and the number of the collocation stations (Tabk 2). We see that the present
solution has a very stable convergence ch'lracteristic. The accuracy of the solution has been
conlirmed through a comparison with the result obtained from the singular hybrid element
technique (lang. 1990): the stress intensity factors K, and 1\11 from the two numerical
solutions agree up to the first two digits and the relative difference is less than two per cent.
when the boundary collocation solution with the 63 terms truncated in the eigenfunction
series is compared with the solution from the F.E.M. model comprising 52 regular elements
and one singular element. Such an excellent agreement betwecn the solutions from the
different appro,lches h,IS been reported for a stress field ncar cracks normal to thc ply
interfacc (1m and Kim. 1989) and for a strcss lield near the frce edgc (Stolarski and Chiang.
1989).

As discussed earlier. the rigid translational modes. which apparently meet the near
field conditions (12) through (14a.b). are not included in eqn (17a) due to the inherent
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Table: 2. Solution conve:rgen'-"e versus the: number of eigenvalues and the number of
collocation stations

£" = ii,h. c'h." = I. hh." = 4. h,,/h ... = I
[90 OJ. unit: GPa (mm)' :

No. of No. of
eigenvalues collocation stations K"'£,, K".£ .. Max. mismatch

51 100 2.6514 3.0656 2.11%
51 120 2.6514 3.0660 1.58%
51 140 2.6512 3.0662 1.57%
63 100 2.7016 3.0511 1.50%
63 120 2.6862 3.0844 1.07%
63 140 2.6606 3.1140 1.27%

110 100 2.n07 3.0291 1.16%
110 120 2.6652 3.05911 1.15%
110 140 2.6867 3.07011 1.14%

[O;90J.

Eigenvalues: ,I = { n
(1I-!)±i"

(n = o. 1.2. 3 .

" = 0.03 ).

No. of
cillcnvillu,-'S

51
51
51
tl.'
tl3
63

110
110
110

No. of
collocillion stations

100
120
140
100
120
140
100
120
140

-1.11063
- 1.7733
-1.7751
-1.11105
- I.7tlX2
-I.IIO<)()
- 1.7706
-1.71176
-1.11070

Max. mismatch

1.70%
1.06%
1.02%
1.26%
1.47'}'.
I.OV'Io
0.53%
1.10%
1.21%

Eillcnv:"ucs: (11=0.1.2.3.... ).

lC,/b

Fig. 3. Stress distribution for [90jOJ•.

limitation of the functional from (10) or (1Ia). Thus we can obtain an accurate solution in
the light of completeness only when we add these terms to the expression for displacements.
as in eqn (18). Indeed. numerical results show that the maximum mismatch of the remote
boundary conditions increases by a factor of 10 and the stress intensity factors deviate more
than 30% when the rigid body displacements are omitted, although the solution shows a
good convergent behavior depending upon the numbers of eigenvalues and collocation
stations.

Figures 3 through 6 show the stress distribution along the XI axis at x~/h~o = 0 (the



Transverse cr<lcking in cross-ply composite laminates 1937

:':':~---,,-------------,
.,t, 'JO'-a -, 'JlI

IL _. _._

.
; 5C-

a au at "2,"h3Q-O_

;3. a:?::: at ~/hgo.o_

a Ut2 at :<z/hgo·O-

.. au at ~ 'h'}O--O ~

75o- 25

,,
- 51] -i-'---..----",----..,-----<

25

x,/b

Fig. 4. Stress distribution for (90/0)•.

....---
~

I III 90~'_._._ • ..1-

" (111 ., "ll""o·o.
4 0::;: at ~ /h.ro"O.

"1"0------,-----------
- J T i

iSOJ ,,0"\
~ ., ~ .
f ~OOOOQ,,<)oo~'J,JO

I '

IOOl i

50 I, 1
1 3 O',~ ., ..~/""o·O. I
I I ... (111 "l ~/h..)O .. O.3

I 1
r) -,.·rr ..

-",lj ,_I_ .._L i J
- :'5 0 25 5 7')

:< ,1b

Fi1l. S. Stress distrihutiun fur [0/9°1•.

.30 t

" I I : I~· o' 1
~O I i " 1Hl"J I -1.._._ . .J.

t: i 0 I 'r.o
• 0. 0. o. 0. o. 0. 0. °""'0.'>0''''1'

u 0 i. ! ~ "'t=1 : : : : ~ • ~ ; i i .. '
....G l o.i' I

~ -1:':'-1 o:,a '
o O'li at. ~:'h90·0_ i

1
1

I ~ ~:2 "I. Jt:/hgO·O_ I
- 20 ~,I a (112 ., ":!/h?O·O.

q • "II ., X:l/hgo·- O~ I
- 30 -+!---..,------,----,------1.

- 25 C 25 .5 75

X,/b

Fig. 6. Stress distribution for [0/90),.

ply interface) and at X2/hqO = ±0.5. For the closed cracks in [0/90].. the normal stress is
compressive. and the shear mode is responsible for delamination growth. It is also noticed
for the opened cracks in [90/0]. that the interlaminar shear stress component an is greater
than the normal stress component an. and this suggests that the high shear stress is also an
important driving force for the growth of opened delamination cracks. The characteristics
of the stress distributions a n and a 12. near the closed crack tip of [0/90]•. agree with the
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Fig, 7. Slr~ss L1istrihution thn1ugh th~ thi<:kncs, at th~ crack tip

results I~lr a partially dosed interface cwck in isotropic bi-materials (Col11llinou, 197H), in
th,tt (1 I: is singular at .\' I = 0 .' x: = 0, while (1:: is singular at x I = 0 ,md x: := 0 and
oounded at .\, O. and .\: = n. It is noticed that both [90,OJ, and [0/901, have pcculi<lr ,lxi,lI
stress distrioutions on the crad face of the 90 ply due to the complexity of loading and
geometry. For [90/01-, the stress component (1" at x: = O. goes to negative infinity first as
the crad tip is approached from the negative x, axis. It then undergoes a violent oscillation
until it ends up at positive infinity as we approal.:h the I.:rack tip from the positive x I axis.
1:01' [O;Y0I-, the stress I.:omponent (1" at x: := 0 goes to negative infinity with IHl osdllations
this time as the eral.:k tip is approached from the negative Xl axis out it is bounded as we
approach the I.:rack tip from the positive x, axis. The 1,Irge neg,ltive values of the axial stress
011 the crad CaL'e of the YO ply as the cral.:k tip is approached from the negative x, axis
appear to be I.:ontrary to our intuition. However, such negative axial stress may be explained
when we examine the stress distribution through the thkkness of the 90 ply at the crack tip
(x, = 0) and the global force equilibrium of the part of the 90 ply comprising -c :::;; x, :::;; O.
Because there is no axial force through the thil.:kness on the left end (x I = - c) of the part,
the net axial fMce through the thickness on the right end (x, = 0) must be zero. However.
the axial stress on the 90 ply, whil.:h continuously decreases as the crack tip is appro,lehed
from the right cnd (Or, = h - d does not disappear exactly at the cross-section of x, = 0
where the I.:raek tip is 10l.:ated. That is, the axial stress (111 docs not del.:rease to zcro but still
n:ll1ains positive on the greater part of the cross-scction at x, = O. To maintain the overall
forl.:e equilibrium of the part considered above in the x, direction, there must be a portion
of cross-sel.:tion under large I.:ompressive axial stress (see Fig. 7). For the [90/01- laminates,
the stress distribution through the thickness should be such that it alone may meet the
overall moment e4uilibrium in addition to the force equilibrium, and hence it is more
l.:ompliGlted than the case of [0/901, wherein the moment equilibrium is automatically
satisfied due to symmetry with respect to the mid-plane.

For both opened and dosed del'lmination cracks, the energy release rates G can be
c,lk'uhtted from Irwin's virtual crack extension concept. For an opened delamination crack,
modes I and II ,Ire strongly coupled and the calculation of the energy release mtes involves
a substantial amount of algebra including computation of a complex contour integral
(Willis. 1971). For self-sufficiency of development. the expressions for the energy release
rates me outlined in Appendix B. Figures 8 and 9 show the stability of delamination cracks
in terms ofenergy release r'ltes under a fixed load condition. These ligures reveal important
ICHtmes regarding the growth of delamination cracks originating from transverse cracking
in cross-ply laminates. When we assume a failure criterion based upon the critical energy
release rate, G == G" (G" is a material constant), we see that any delamination crack will
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undergo unstable growth until the crack length reaches a critical value associated with the
maximum G. The crack will continue to grow under a fixed loading until the energy release
rate decreases to the critical value G•. Thus. there exists an inherently built-in crack arrest
mechanism for the present delamination cracks. The critical crack length is dependent on
the relative crack spacing hllt"11 as well as on the relative ply thickness It Il/h"II' As the:
thickne:ss of the 90 ply increases relative: to the O· ply. the energy release rate notably
increases .Ind therd'ore the crack growth after the onset of the delamination crack will be
more unstabh:. This is consistent with the observation that a larger portion of the load will
be carried by the 90 layer as tbe thjckness of the 90 ply increases. and the ene:rgy
release rate will accordingly increase under a fixed load condition. On the other hand. it is
worthwhile to note that the energy release rate tends to become independent of the crack
length. except when the crack is of the order of the thickness of the 90 ply. as the thickness
of the 90 ply deere.lses.

The energy release rates arc zero at the onset of the delamination cracks. as shown in
hgs 1\ and 9. as the stress singularity of the transverse cracks in a cross-ply laminate under
extension is weaker th'lI1 the inverse square root singularity and therefore the stress intensity
for a vanishing delamination crack approaches zero under extension (1m and Kim. 19~1) .
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APPENDIX A

The free wnst;lIlts )', .. (k = I. 2. 3) in e4n (16) arc determined thruugh buundary collocation so that the
eigenfunction solution (17b) and (Ill) meet the n:moll: boundary conditions (I<)a c) in the least square sense.
For convcnience. wc write e4ns (17b) and (Ill) as

11, = L 11...I/.(x,.x,.,5,.). II, = L II..h;'(x,.x,.li.. )
u-l "_I

(AI)

where II. denote one of the )',. or u;'. and g~. h,· represent the corresponding eigenfunctions in the expressions for
Q~':" and P'::~. Let a•. Ii,. vu,/<'x 1 and vu,Ivx, (i = I 6. j = 1·3) denote lhe prescribed values for the stresses.
displacemenls and displacement derivatives on the remOle boundaries. The boundary condilions (19'1 c) can then
be: written in the form

a, = L II.,I/.(.;;, ..;;,.J.). u, = L 11.!1;'(.;;, ..;;,.,5.. )
"_I "_I

,
L P.If",(.;;, ..;;,.J.).

•• 1

wherc.;; ,•.;;, denote the dimcnsionless coordinates of the remote boundaries. and h7, .h7, arc lhe parti.11 derivativcs
of h~ with rcspcctlO lhe X,. X, coordinatcs. respectively.

The fun<:tionalto be: minimized in the boundary collocation is written as



Transverse cracking in cross-ply composite laminates

, (<'Ii . )'J+ I D, ~ - L fl.Jr:., ds.
1_ I (X~ ,,_ I

194\

(A2)

Here i'B. denotes the whole remote boundaries. and A,. B,. C, and D, are equal to I if the terms correspond to
the prescribed boundarY conditions. and otherwise bel:ome zero. For example. eqns (19a -e) indicate. for the
llJU UJ. lamanates. that A, = A. = 1 and the other terms are zero on the It:ft end of the IJU ply. A, = A. = I and
the others are zero on the top surface of the laminates. B, = C, = I and the others are zero on the right end. etc.
Minimization of the above residual leads to the following system of simultaneous linear equations for the free
constants fl. :

f '[ 0- 0- Jcu ("II

= L A,a,g';' + A, .,a,. ,g';'. -' + B,li;!'';' + C~ h'::, + D,~h',~, ds
.'8. ,_ I l'.\", (.\ ~

(m = 1.2.3.4 ... ). (A3)

The system of the above infinite number of linear equations can be approximated by an appropriate truncation.
say m, n = I-N, and in general. a proper scaling procedure is required for successful numerical computation.

APPENDIX B

A.:cording to Irwin's virtu.. l cr..ck extension concept. the energy rele..se rate for the case of pl..ne strain
deform.. tion m..y be written as

(,\4)

SlIhstitlltlllg el(ns (20;1 0) intu this e.xpressiun. ,lIllI performing lengthy hut str.. ightforward ..Igehr... we untain
the form:

and

1 I·I. [ {('ir-r)} {('ir-r)}] J,ir-rc; = lim ~. 111, .:us "In +-111, sin "In dr
,\, • II _elr II r , , fur an opened .:r..d (AS)

. I I'" J,ir-r IG = 111\1-·.·· 111, -~-- dr = lt1ll,
,t, ·.u :2()r II r 4 fur a dused crack. (M)

where

111, = j(A"u,+A"u, +B"h,+B"h,)

111, = \(A"h,+A"h,-B"u,-B"tltI

"'1 = C"C,+C"C,

and A.~. B.~, C,~. tI,. h, and c, are the cuellicients appearing in eqns (20a d). With the aid of contour integration.
Willis (1971) shuwed th'll the integral (AS) leads tu

I ""+2111,,,G = .It ..__·_~--
cosh ('Ilt) •

which is reduced to (A6) when the oscillation dis..ppe.. rs ('1 = 0).

5.'S 21:15-r


