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Abstract—Based upon the Stroh formalism for anisotropic elastic materials and upon the method
of eigenfunction expansion. the stress redistribution due to delamination cracks originating from
trunsverse cracking is examined from [90,0], and [0/90}, laminates under extenston. The structure
of the solution, in the form of a series expansion, is determined from the eigenvalue equation
resulting from appropriate near-field conditions. To complete the solution, use is made of a boundary
collocation technique in conjunction with the eigenfunction series that includes a large number of
terms, enough to represent the elastic state throughout the appropriate domain concerned. The
fracture mechanics parameters, such as stress intensity factors and energy release rates, are caleulated
and the major characteristics of stress distribution are discussed. The stability of delamination
cracks is examined for varying ratios of ply thickness in terms of the energy release rate.

I. INTRODUCTION

Fracture analysis of an anisotropic composite laminate has gained substantial attention in
association with the understanding of its fundamental fracture behavior, which is of critical
importance for the design of composite structures, In particular, transverse cracking and
delamination fracture have been among the subjects under intensive investigation during
the last two decades. For example, stress singularities were first reported by Ting and Hoang
(1984) tor transverse cracks, and Wang and Choi (1983a) treated delamination cracks in
anisotropic composite laminates. Various problems concerning transverse cracking und
delamination dumage, including crack initiation and growth, stiffness reduction and other
changes of structural propertics, have been discussed by many rescarchers ; the number of
works along this line is too great to give individual citation herein. Many important
contributions may be found in the thesis by Lim (1988), for example.

Recently, the asymptotic stress field near transverse cracks occurring in the 907 ply of
cross-ply luminates was examined by Im (1989) and Im and Kim (1989). As the load
increases, the transverse cracks in the 90 ply of a cross-ply laminate that are arrested at
the interface tend to kink into the delamination cracks along the ply interface (Lim, 1988).
The purpose of this work is to obtain the stress redistribution under extension in the
presence of such interfacial cracks originating from transverse cracking, and to examine
the fracture behavior, including the stability of delamination cracks and the influence of
geometric parameters. [t is assumed that these interface cracks run through the width of a
laminate, with a uniform spacing and crack length. The asymptotic structure of the solution
is obtained, under the assumption of plane strain elasticity, from the Stroh formalism of
anisotropic clasticity and the eigenfunction expansion [see Ting (1986) or references
therein]; appropriate near-field conditions are imposed to lead to the eigenvalue equations,
which determine the structure of the asymptotic solution, including the stress singularity.
To complete the solution, use is then made of a boundary collocation technique in con-
junction with the eigenfunction series that includes a large number of terms, enough to
cover the elastic state of the far field as well as of the ncar field. The convergence behavior
of the solution, including the influence of the number of cigenvalues truncated in the
serics solution and the number of collocation stations, is demonstrated through numerical
examples and the role of the two translational planar rigid body modes, in association with
the solution accuracy, is critically examined. The characteristics of the singular stress field
near the crack tip are briefly discussed for [90/0], and [0/90].. respectively ; under the given
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loading of extension. the defumination crack turns out to be opened for [90 0], laminates.,
while [0 90], laminates are found to have a tully closed delumination crack. For the opened
delamination crack in {90 0], luminates which has an oscillatory singularity. the stress
intensity for an interfacial crack using the analogy of lineur elastic fracture mechanics. as
proposed by Rice (1988). is computed. The effect of plyv thickness is assessed in terms of
the energy release rate. and the stability of delumination cracks is examined under a fixed
load condition.

2. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS

Consider the two types of cross-ply composite laminate. [90 0], and [0 90].. subjected
to extension. As the load increases. there will occur numerous transverse cracks running
parallel to the fiber orientation of the 90 ply. with an approximately uniform spacing along
the length of the laminates. These cracks. terminating perpendicular to the ply interface
because of the stronger 0 ply. tend to develop into delamination cracks along the interface
as the load increases further. Figure | is typical of such delamination cracks originating
from transverse cracking (Lim. 1988). [t is noticed that the cracks run through the width
of a laminate. We will examine the stress redistribution in the laminate due to the presence
of such interfacial cracks under extensional loading. To simplify the problem. we assume
that the cracks are uniformly arranged with the configuration symmetric about the nud-
plane, as shown in Fig. 2, so that the overall arrangement is obtained by repetition of the
representative unit cell.

We take a rectangular Cartesian coordinate system with the origin at one of the crack
tips. We choose the v axis to be along the length of the composite laminates or along the
loading direction, while the v, axis is taken to be along the direction of the laminate
thickness, and then the voaxas s along the laminate width, which is parallel to the cracks
(sce Fig. 2). Each ply of the composite laminates lies in o plane parallel to the v, vy plane,
and the ply orientation ¢ is defined to be the counter-clockwise angle, viewed from above,
that the fiber direction makes with the v, axis. We assume that the laminate dimension in
the vy direction (laminate width) is sufliciently large compared with the liminate thickness,
and that the kiminate is assumed to be in the state of plunc strain on the x—x, plane.

The plane problems of a composite body comprising isotropic materials, including
stress distribution around composite wedges, were treated by many rescarchers, e.g. Zak
and Williams (1963), Bogy (1971), Cook and Erdogan (1972) and Dempsey and Sinclair
(1979). For an anisotropic composite body, the out-of-pluane displucement is in general
nonzero due to the associated coupling in the stress-strain relation. This is so even when
the normal strain in the out-of-plance direction is assumed to be zero (which is the case
for deformations that depend upon only the two coordinates on the plane). Among the
approaches in analyzing such clastic detormations, Lekhnitskii's complex potentials were
used by Wang and Choi and their associates [e.g. Wang and Choi (1982), Wang and
Yuan (1983)] to examine the boundary-layer etfect in the free-edge problem. Ting and his
assoctates, on the other hand, used Stroh's approach (Stroh, 1962) to treat the stress
singularitics near various anisotropic composite wedges and cracks [Ting (1986) and
references cited therein]. This approach has the advantage, as shown by Ting (1986), that
it leads to a simple and neat formulation of problems in anisotropic clasticity. Duc to such
an advantage, we use the Stroh formalism to determine the structure of the solution for the
present problem.

Let u,, &, und g, denote the Cartesian components of displacement, strain and stress,
respectively. For deformations that depend upon two coordinates x; and x, only. we have
the governing equations:;

Equilibrium equation, g,, | + 4,5 ; = 0 (no body force), (1a)
Strain-displacement relation. &, = (u,, +u,,). 2. (lb)

Stress—strain relation. o, = C ey, Cur = Cur = Gy, (lc)
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e b Typreal delannnation cracks originating from transverse cracking (Lim, {988) (white arcas
represent the delumination zone and solid fines the transverse eracks).
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Fig. 2. Delamination ¢racks onginating from transverse cracking in [90,0], and [0/90], (2, = d/h).
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where €, are the fourth-order stiffness tensors, and the comma indicates partial ditfer-
entiation with respect to v, Introducing the “collapsed™ representation, we may write the
stress -strain relation as

o, =C.. &=38,0, (2a.b)
where
3 r 3 r r
(UI Gy &) € )
[ G'_»: £s E::
g J Gy3 € J £33
< k= e =Y, (2c.d)
g, Gy £y €23
as a1y £ ey
Lo'tu LO12) LCM LZCIEJ

and C, and §,, arc the stiffness and the compliance matrix. For orthotropic materials like
[90/0}, and [0/90], laminatcs, we have

Cli=Cs=Cly=Clu=Ci;i=Ci,=Cry=C1s=Cr,=Cys=Cy = C5, =0.
(3)

For such materials. the displacement component u, is decoupled from u,. .. and the plane
strain assumption can be made for extension along the x, axis, as in the present deformation.
Following Ting and Chou (1981). we can show that the general solution takes the form for
the present problem,
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4
u, = \; CufilZ) o=y (K=1.2.3.4), (4a.b)
k=
S dft)
O = ). Tu -a—_l‘--, T = (Copr + 1 Copr)t  (nOsumon k), (5a.b)
k=1 -k

where the Greek letters x, ff, 7 take the value 1 or 2, and summation is implied on repeated
Greek indices only: g, are the cigenvalues to be determined. and f,(z;) 1s a function of z,.
Substituting eqns (5a.b) into eqn (la), we obtain the equations:

D)y = 0.
D) = Cogy + (G + Cx:m)'i"l‘kzcx:/!!- (6a.b)

For the existence of nontrivial solutions, we have
det [D, (1)) = 1Dy ()l = 0. (N

and the solutions of this quartic equation yield the two pairs of complex conjugate cigen-
values (Stroh, 1962),

A= (x=1,2) (8)

The associated cigenvector vy, can now be obtained from (6a) through a proper normal-
ization. Using the collapsed symmetry refation (3), we obtain the explicit expression for
eqn (7)

1A CLCo, = CH(CooCra) =2C 15/ Caa b +C Cry = 0. (V)

The four eigenvalues g appear as two pairs of complex conjugates, and they are purely
imaginary if the mequality

{1/ Coo = CH/(Coy Ca2) = 2C 11/ Cra} = 4(C11/C2y) 2 0

holds among the stiffness components C,, ; otherwise they have a nonzero real part. For the
advanced fibrous composite materials such as graphite epoxy and boron epoxy, the above
inequality holds and theretore the values of g are assumed to be purely imaginary here-
after. It is worthwhile to note that these tour cigenvalues g, are the constants that make eqn
{4b) the complex characteristics ol the governing elliptic partial differential equation tor
Lekhnitskii’s complex stress potential (Lekhnitskii, 1963).

3. ASYMPTOTIC EIGENFUNCTION EXPANSION AND
BOUNDARY COLLOCATION SOLUTION

[n this section, the asymptotic eigenfunction expansion for the function f,(z;) is exam-
ined ncar the delamination crack tip. and use is made of this expansion to obtain the
complete numerical solution with the aid of the boundary collocation method. We assume
a power-type cigentunction for f(2,) as given by (Wang and Chot, 1982 Ting, 1986)

iz = Y Gzt (0, + 1), (10)

n=i

which leads to the expression for the displacement and stress field
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x 4

w? =3 T ORerAm™ G, (m= 12, (1)
L L

ai= L T O™ (m=1.2). (119)

where the superscript m = 1. 2 indicates the upper and the lower ply. respectively. Here the
eigenvalues J, are to be determined from the so-called “near-field™ conditions around the
crack tip. including the traction or displacement conditions on the crack surface and on the
ply interfuce. The coeflicient C,, is dependent upon the associated eigenvalues d,. and can
be determined within an arbitrary constant when J, is obtained.

We assume that there is no friction on the delamination crack surface and that the two
plies are rigidly bonded along the rest of the ply interface. Then the near-field conditions
for the present case may be written as

(7‘:‘:](.\ 0~ )—'0' (\| 07)=0 or [0'::(.\'].0)]=[ll:(.\'|.0)]=0
{on the crack surface, x, €£0), (12)
a6, 07 ) =o' (x,.0 ) =0, (on the crack surface, x, < 0), (13)

(72206, 0)] = [0:(x,.0)] = 0, [“I(-\.I;O)I = [u:(x,.0)] =0
{on the interface, x, = 0). (14a.b)

where the bracket [o] denotes the discontinuity of the quantity in it across the ply interface,
e [os v O = 6V2(x . 0%) ~a'W(x,.0 ). The first condition in eqn (12) 1s valid for the
opened region of the crack surfuce and the latter is for the closed region, Substituting the
expressions for displacement and stress (1) into the above near-field conditions, we obtain
a system of 8 x 8 homogencous lincar equations

AS)B, =0 (ij=18), B,=Cl. Buyiw=Cr (k=1-4). (15a)

For the existence of nontrivial solutions, we have

(4,01 =0, (15b)

which determines the cigenvalues 3,. When the eigenvalues J, are known, within unknown
constants the cigenvectors C,, are computed from eqn (15a) and the asymptotic form of the
solutions for the stress and displacement is given by egns (11a,b). From the structure of
A, (0,). we cun show that if J, is a root of the charucteristic equation, so is its complex
conjugate &,. and the expressions (11a.b) for the stress and displacement become real. To
take only the real part of egns (1 1a.b) for convenience, we may introduce

I

=Yy —iy.)hiy  forcomplexd,. Im[3,] >0

|

o= Ae AP forreal §, (16)
where b} is the solution of eqn (15a), computed by a proper normalization, and y,,. 72,

and 7, are constants to be determined to complete the solution. The expressions for the
stress and displacement (11a.b) are then written as

W= Y o, e = Y Pm (=12, (17a.b)

n=l LEN

where @7 and P are given by
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if 3, is complex, or

5
Q:";” —= .‘,3" RL‘ [ Z h;\:::)l.(x;u__;mw,,* K; ((5,, + l)}

and

)

1) - 1 ey stem) e ) H A
niff T 1 Re [ Z lhlm Ttk <4 ]‘} it On 15 rt‘ll'

A=t

The unknown constants 7, can be determined by matching the asymptotic expressions with
the far-ficld conditions (the conditions at the remote boundary) through the boundary
collocation techmique (Wang and Choi, 1982), or through special finite element methods in
which the present asymptotic solutions are embedded in a singudar crack tip clement (Wang
and Yuan, 1983), orin which the asymptotic solutions are introduced over the entire domain
(Stolarski und Chiang, 1989). Extensive hists of the literature on the boundary collocation
methods and the speciad finite clement techniques may be found in Chung (1988) and Atluri
and Nukagaki (1986), We use the boundary collocation technique for the present problem
here because of its simplicity. A brief description of this technique is given in Appendix A
for self-sufliciency of the present development, and tor details the readers may be referred
to Wang and Choi (1952).

The power-type expansion (10) fails to be complete when the algebraic multiplicity is
greater than the geometric multiplicity, that is, there are not enough scts of power-type
cigenvectors associated with these multiple eigenvalues [see Dempsey and Sincluir (1979),
Ting und Chou (1981) and the references cited therein]. Dempsey and Sinclair (1979)
resolved this ditliculty by introducing logarithmic eigenfunctions, which ensure the existence
of the sets of eigenvectors, enough to span the solution. Subsequently this was extended to
the problem of anisotropic composite laminates by Ting and Chou (1981). The existence
of the logarithmic eigenfunctions can be examined by calculating the algebraic multiplicity
of the eigenvalues and the rank of the associated coefficient matrices A,,(3,) in (15).

An essential prerequisite for the success of the aforementioned boundary collocation
technique is that the asymptotic representation (17a,b) should be complete in the sense that
it can represent the elastic field over the entire domain concerned, including the far-field
region as well as the near-field region. For example, the present boundary collocation
method is difficult to apply if there is another singular region or a strong boundary layer
in the far ficld, which the cigenfunction expansion (17a.b) [uils to represent ;. for the single
expression for the elastic state valid throughout the entire domain is not availuble. For such
a cuse, we may usc the hybrid F.E.M. wherein cach singular or boundary-layer region is
modeled as a special element into which the associated asymptotic solution is incorporated,
or the enriched F.E.M. wherein the asymptotic solutions arc defined over the entire domain.,
Roughly speaking, we can approximate the far field by retaining a suflicient number of
terms in the near-ficld eigenfunction series. as long as the asymptotic cigenfunction series
is complete in the near field and there are no strong boundary layers other than the near-
ficld singular region. For such cases, we in general have no diflicultics in applying the
boundary collocation method in conjunction with the asymptotic representation in the near
field.
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Another important issue related to the completeness is the treatment of rigid body
modes. If only traction conditions are involved in the remote boundary, such as in the free-
edge problems (Wang and Choi, 1982), we exclude rigid body modes from the eigenfunction
representation because they are indeterminate under traction boundary conditions. If there
are. however. any displacement boundary conditions involved in the remote boundary,
which is the case for the present problem, we have to incorporate all relevant rigid body
displacements in the asymptotic representation (1la); otherwise the asymptotic solution
for displacement (11a) or (17a) fails to be complete and this will lead to an inaccurate
solution. The power-type expansion (1 la), however, excludes the two displacement modes
corresponding to rigid translation in the x, and x, directions, although these rigid dis-
placements are both compatible with the near-field conditions (12). (13) and (14a.b). Such
incompleteness is due to the inherent limitation of assumption (10) wherein (J,+1) is
introduced in the denominator and therefore the constant translational rigid displacements
are excluded. To rectify this, we modify the asymptotic solution (17a) as

«
=Y om0 =uf (18)
n=10

where u) (x = 1.2) is the constant translational rigid displacement or the crack tip dis-
placement in the x, direction, and QL2 (n = 1) is the same as before. The significance of
including these terms is apparent in the light of completeness, and their quantitative effect
will be illustrated through numerical examples.

4. NUMERICAL RESULTS AND DISCUSSION

In this scction, we determine the unknown free constants y,,. v, and y,, through
boundary collocation to complete the solution. We will confirm the convergence of the
boundary collocation solution, and discuss the nature of the near-tip singular fields in terms
of the stress intensity, and the fracture behavior of delamination cracks, including the
stability of cracks and the eftects of ply thickness upon the energy release rates.

For the numerical computation, we use the following material data for the graphite
epoxy T300/5208 (Whitcomb, 1987):

E, =134GPy, E,=FE,=102GPa, G, r=0G,,=552GPa, G,,=343GPa,
vor=vi, =03, vy =049,

To determine the free constants, we match the near-field solution (18) with the remote
boundary conditions through boundary collocations. Let ¢, &, hy,, hy and b denote half the
crack length, the displacement prescribed at the right end of the unit cell, the thickness of
the 90 and 0 ply, and half the spacing of the transverse cracks, respectively (see Fig. 2).
The remote boundary conditions for the case of [90/0), laminates may then be written as

g(—c, %) =0,:(—c,x,) =0 0 < x; < hy on the left end of the 90° ply; (19a)
6130, Iyy) = 612(x,, hyy) =0 —c¢ £ x; € b—con the top surface; (19b)

] .
_ Cuxb—c,xy)
ub—c.x,) =14, e e

i =0 =—hy<xy<hyontherightend; (19¢)
vl

Cu (e, =1 .
fﬂi(—;';———"—') =uy(x,, —hy) =0 —c < x, <b—conthemid-plane; (19d)

=0 —h,<x; <0ontheleftend of the 0" ply. (19e)

For [0/90], laminates, we have similar boundary conditions. Note that the boundary con-
ditions involve the prescribed displacements for u, and u;, and this requires the inclusion
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of the rnigid body modes in the eigenfunction solution as in eqn (18). We now truncate the
series solution (1¥) to retain a finite number of terms. and determine the free constants
e Tae and o, through the boundury collocations such that the resulting solution may
approximate the above remote boundary conditions in the least square sense. The detailed
procedure 15 outlined in Appendix A.

The resulting numerical solutions show that the delamination crack for [90 0], is fully
opened while it is fully closed for [0 90].. This is consistent with the following observations
the thickness contraction of the 0 ply due to the axial stress ¢, remains almost uniform
alonyg the x, coordinate, whilst the thickness contraction of the 90 ply. on the other hand,
increases due to shear lag as we proceed away from the damaged zone along the x,
coordinate. Thus, for [90 0] laminates, wherein the Y0 ply are free from constraints on the
exterior surtuce, the material elements near the free surface of the 90 ply around the
delamination region are pulled toward the undamaged region and this causes the crack to
tend to open. For [0 90] laminates, wherein the interior 90 ply is symmetrically constrained
on the upper and lower tuces by the 0 ply. the crack face on the 90 ply 1s brought into
contact with the crack face of the 0 ply because the thickness contraction of the 90 ply
duc to axial extension is relatively small near the delamination region compared with the
undamaged region,

The eigenvalues for the two types of interfacial cracks are given as:

n—Yt+igand n for the opened cracks in [90 0],
and
n=Yand s tor the closed cracks in [0,90),
(=0, 123 ... and 5 =003..)).
Notice that the imaginary part of the first cigenvalue is not zero for the opened cracks of
[90.0], and thercetfore the stress singularity is oscillutory, while the stress ficld near the closed
cracks ol [0,90), has the mverse square root singularity. This agrees with the results reported
in the carlier literature, ¢.g. Comninou (1977) and Wang and Chot (1983b). Taking the
singular term alone in the cigenfunction expansion (17a.b), we can write the asymptotic
stress ficld ahead of the crack tip and the crack tip opening displacements as
ap(r 0y = (A cos(plnr)+ By sin(plnnp ' (20:1)

wr ) = r. =) = [u, cos (g Inr)y+h, sin (plnp)r' 4 -

for the openced cracks in [90,0], (20b)
and
aulr0)=Cur "l ) (=) = T
for the closed cracks in [0/90],. (20c¢.d)

where ™™ is the imaginary part of the stress singularity. The parameters o, B, Coyoa,.
b, and ¢,. normalized by the applied normal strain &, = d,/b. are tabulated Tor the case
coy = 1oy =4 and My, = Fin Table 1. The stress singularity is oscillutory for the
opened interfactal cracks and therefore a physically inadmissible interpenctration oceurs as
r goes to zero. To rectify such a shortcoming. Comninou (1977) proposed a new intertacial
crack model Tor dissimilar isotropic materials, whercin the partially closed crack fuces are
in frictionless contact near the tips. and Wang and Choi (1983b) extended such a partially
closed crack model to the case of dissimilar anisotropic materials. However, the zone of
interpenctration is negligibly small in a fully opened crack and the asymptotic stress ficlds
are almost the same for both of the fully opened and the partially closed models (Wang
and Chot. 1983b): morcover, the partially closed model also has an inconsistency that itis
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Table 1. Asymptotic stress field uhead of the cruck tip and crack tip opening
displacements
to=th Ry he =1 hyh =025 ¢cbh=025

[90-0], {0 9oL,
Ay 0.68946 —
B, —~0.93051 -
A.. 0.91054 —
Stress ticld ahead of the B.. —1.228%9 —
crack tip Ay 1.44074 —
Gulr.0) oy B, 1.06751 —
C, — 0
(G - 0.
C. — —1.74323
a, 0.67692 —
b, 0.42412 -
Crack tip opening displacement d, ~0.79231 —
[t dr.m) —u,(r. — 1)) 6y h, 0.58705 —
¢y — —-0.80514
¢, — 0.

oulr. ey = (A cos (pIn )+ 8, sin(plne))r ' 4
[, (r. m) —u,r. — ey = [4, cos (p In rY+b, sin (g lnr)jr' S+ -
for the opened cracks in [90,0],.
and
a r My = Cyr "0 uleor)~udro —m))in, =t b

for the closed cracks in [0,90),.

not reduced to the solution tfor a homogencous body when the two plies become identical.
For such reasons, we do not seek the solution for the partially closed model here.

To characterize the steess field near the present delamination cracks, we may use
fracture mechanics parameters such as the stress intensity factors Ky, Ay and the energy
release rates G. For closed cracks in {0/90],, there are no difticulties introducing the classical
stress intensity tactors for this purpose. [n fully opened interface cracks in [90,0),, however,
modes T and I are inherently coupled, and the stress intensity factor is not detined in the
same way as in the classical fracture mechanics, One possible definition, as suggested by
Rice (1988), is to define the stress intensity fuctor by obtaining the stress value at a specific
small distance from the crack tip, that is, for a very small value of 7,

Ky = J2nfa 3, (7.0), Ky = /2nia,4(7.0).

For the present case, we take 7 to be ¢/50. Because the imaginary part of singularity ™ is
very small (n = 0.03...), changing the value of 7 within 4 modest range, say. an order of
a factor of 10 or less, does not affect the values of K, and K|, significantly (Rice, 1988).

To confirm the convergence of the solution, we computed the stress intensity fuctors
and the maximum mismatch of the remote boundary conditions, varying the number of
the eigenvalues and the number of the collocation stations (Table 2). We see that the present
solution has a very stable convergence characteristic. The accuracy of the solution has been
confirmed through a comparison with the result obtained from the singular hybrid element
technique (Jang, 1990): the stress intensity factors K, and K, from the two numerical
solutions agree up to the first two digits and the relative difference is less than two per cent.
when the boundary collocation solution with the 63 terms truncated in the eigenfunction
series is compared with the solution from the F.E.M. model comprising 52 regular elements
and one singular element. Such an excellent agreement between the solutions from the
different approaches has been reported for a stress field near cracks normal to the ply
interface (Im and Kim, 1989) and for a stress field near the free edge (Stolarski and Chiang,
1989).

As discussed earlier, the rigid translational modes, which apparently meet the near-
field conditions (12) through (14a.b). are not included in eqn (17a) due to the inherent
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Table 2. Solution convergence versus the number of eigenvalues and the number of
collocation stations
£ =tib, cihoy = L bihyy =4, hyhgy =1

[90 0], unit: GPa (mm)'*
No. of No. of
eigenvalues collocation stations K e, Ky €y Mux. mismatch
St 100 2.6514 3.0656 211%
S1 120 2.6514 3.0660 1.58%
St 140 26512 3.0662 1.57%
63 100 2.7016 3.0511 1.50%
63 120 2.6862 3.0844 1.07%
63 140 2.6606 31140 1.27%
o 100 27207 3.0291 1.16%
1o 120 2.6652 3.0598 1.15%
110 140 2.6867 3.0708 [.14%
. n (n=0101.23....
Eigenvalues: d = .
igenvalues: ¢ {("—i‘)il'l n=003..).
{0:90],
No. of No. of
cigenvalues vollocution stations Kyi/ey Max. mismatch
51 100 - 1.8063 1.70%
51 120 -1.7733 1.06%
51 140 - 1.7751 1.02%
63 100 - 1.8105 1.26%
63 120 —1.7682 1.47%
63 140 — 1.8090 1.03%
110 100 - 1.7706 0.53%
1 120 -~ 1.7876 1.10%
110 140 - 1.8070 1.21%
. . n
Eigenvalues: 4 = {, y (r=0,1,23,..).
Ho~=
3o ';
T e
271 O ’
., e - i
~ e, |
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Fig. 3. Stress distribution for {90/0],.

limitation of the functional from (10) or (11a). Thus we can obtain an accurate solution in
the light of completeness only when we add these terms to the expression for displacements,
as in eqn (18). Indeed. numerical results show that the maximum mismatch of the remote
boundary conditions increases by a factor of 10 and the stress intensity factors deviate more
than 30% when the rigid body displacements are omitted, although the solution shows a
good convergent behavior depending upon the numbers of eigenvalues and collocation
stations.

Figures 3 through 6 show the stress distribution along the x, axis at x,/#yo = 0 (the
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ply interface) and at x,/hqq = +0.5. For the closed cracks in [0/90],. the normal stress is
compressive, and the shear mode is responsible for delamination growth. It is also noticed
for the opened cracks in [90/0], that the interlaminar shear stress component g, is greater
than the normal stress component .. and this suggests that the high shear stress is also an
important driving force for the growth of opened delamination cracks. The characteristics
of the stress distributions ¢,, and o,,, near the closed crack tip of [0/90],. agree with the
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Fig. 7. Stress distribution through the thickness at the crack tip

resudts for a partially closed interface crack in isotropic bi-materials (Comninou, 1978), in
that o, is singular at vy = 0,, x,; =0, while g, s singular @t x; =0 and v, =0 and
bounded at x; = 0, and x, = 0. [tis noticed that both [90,0], and [0/90], have peculiar axial
stress distributions on the crack face of the 90 ply due to the complexity of loading and
geometry. For (90,0, the stress component g, at x, = 0, goes to negative infinity first as
the crack tip is approached from the negative v, axis. It then undergoces a violent oscillation
until it ends up at positive infinity as we approach the crack tp from the positive x, axis.
For [0,90].. the stress component oy at v, = 0 gocs to negative infinity with no oscillations
this time as the crack tip is approached from the negative x, axis but it is bounded as we
approach the crack tip from the positive v axis. The large negative values of the axiad stress
on the crack face of the 90 ply as the crack tip is approached from the negative x, axis
appeir to be contrary to our intuition. However, such negative axial stress may be explained
when we examine the stress distribution through the thickness of the 90 ply at the crack tip
(v, = 0)und the global force equilibrium of the part of the 90 ply comprising —¢ € ¥, < 0.
Becituse there is no axial force through the thickness on the leftend (v, = —¢) of the part,
the net axial foree through the thickness on the right end (v, = 0) must be zero. However,
the axial stress on the 907 ply, which continuously decreases as the cruck tip is approuached
from the right end (x; = A—¢) does not disappear exactly at the cross-section of v, =0
where the crack tip is located. That is, the axial stress o does not decrease to zero but still
remains positive on the greater part of the cross-section at v, = 0. To maintain the overall
force equilibrium of the part considered above in the x, direction, there must be a portion
of cross-section under large compressive axial stress (see Fig. 7). For the [90/0}, laminates,
the stress distribution through the thickness should be such that it alone may meet the
overall moment equilibrium in addition to the force equilibrium, and hence it is more
complicated than the case of [0/90], wherein the moment equilibrium is automatically
sitisfied due to symmetry with respect to the mid-plane.

For both opened and closed delamination cracks, the energy release rates G can be
caleulated from Irwin's virtual crack extension concept. For an opened delumination crack,
maodes Tand H are strongly coupled and the calculation of the energy release rates involves
a substantial amount of algebra including computation of a complex contour integral
(Willis, 1971). For sclf-sufficicncy of development, the expressions for the energy release
rates arc outlined in Appendix B. Figures 8 and 9 show the stability of delamination cracks
in terms of energy releuse rates under a fixed load condition. These figures reveal important
features regarding the growth of delamination cracks originating [rom transverse cracking
in cross-ply laminates. When we assume a failure criterion based upon the critical energy
release rate, G = G, {G, is a matertal constant), we see that any delamination crack will
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Fig. 9. Energy release rate versus the length of delamination erack under a fixed loading condition
in [0/90),.

undergo unstable growth until the crack length reaches a critical value associated with the
maximum G. The crack will continue to grow under a fixed loading until the energy release
rate decreases to the critical value G,. Thus, there exists an inherently built-in crack arrest
mechanism for the present delamination cracks. The critical crack length is dependent on
the relative crack spacing h/hg, as well as on the relative ply thickness #,/h,,. As the
thickness of the 90 ply increases relative to the 07 ply, the energy release rate notably
increases and therefore the crack growth after the onset of the delamination crack will be
more unstable. This is consistent with the observation that a larger portion of the load will
be carried by the 90 layer as the thickness of the 90 ply increases. and the energy
release rate will accordingly increase under a fixed load condition. On the other hand. it is
worthwhile to note that the energy release rite tends to become independent of the crack
length, except when the crack is of the order of the thickness of the 90 ply. as the thickness
of the 90 ply decreases.

The cnergy release rates are zero at the onsct of the delamination cracks., as shown in
Figs 8 and 9, as the stress singularity of the transverse cracks in a cross-ply laminate under
extension is weaker than the inverse square root singularity and therefore the stress intensity
for a vanishing delamination crack approaches zero under extension (Im and Kim, 1989).
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APPENDIX A

The free constants y;, (A = 1,2,3) in ¢gn (16) are determined through boundary collocation so that the
cigenfunction solution (17b) and (18) meet the remote boundary conditions (194 ¢) in the least square sensc.
For convenience, we write eygns (17b) und (18) as

a, = ZI Budi(xix0 8, = Y BN x0,) (Al)

- et

where fi, denote one of the y,, or u, and g/, h7 represent the corresponding cigenfunctions in the expressions for

v and P Let 6, @, 8a/dx, and Sa/dx, (=16, j = 1-3) denote the prescribed values for the stresses,
displacements and displacement derivatives on the remote bounduaries. The boundary conditions (19a ¢) can then
be written in the form

6,= ¥ Ag(5.506,) G = ¥ BI(E,.5..0,)

ne A=l

o

¥ d .. C
5;: = z:’ B (5. 52.6,) z

where ,, ¥, denote the dimensionless coordinates of the remote boundaries. and A7, . A7, are the partial derivatives
of A7 with respect to the x,, v, coordinatces, respectively.
The functional to be minimized in the boundary collocation is written as
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[ 0 2 ) M ] ca . 2
n=‘[ [EA,(&,—Z/L.>+:B<u-—Vﬂh">+EC(u ,m.)
8Lt A=t je i et sl el

+¥ D, (‘.‘ ) ﬂnlr::ﬂ ds. (A)

Here 8, denotes the whole remote boundaries. and A4, 8,. C, and D, are equal to | if the terms correspond to
the prescribed boundarv conditions. and otherwise become zero. For example. eqns (19a-e) indicate. for the
90 V|, laminates, that A, = A, = | and the other terms are zero on the left end of the YU ply. 4, = A, = | and
the others are zero on the top surface of the laminates. B, = C, = | and the others are zero on the right end. etc.
Minimization of the above residual leads to the following system of simultancous linear equations for the free
constants f,:

)3 ILJ Y A GG+ A, g7 G+ BHH + CHOKL + DATH ) ds
CByrat

= AG G+ A, G, g+ Bk +C, hj",+D,. Ky lds (m=1.2.3.4..). (A}
CByrm 6 X,

The system of the above infinite number of lineur equations can be approximated by an appropriute truncation,
say m, n = }-N, and in general, a proper scaling procedure is required for successful numerical computation.

APPENDIX B

According to Irwin's virtual crack extension concept, the energy release rate for the case of plane strain
deformation may be written as

l ntd
G=G+G, = hnl' {»}j (o2 (r. OV (Sr —r Ry ~u (Sr —r, — 1)} + 0, (r.0) 1, (Sr —r. 7)) =10 (Sr —r, —R)}] dr.
(Ad)

Substituting eqns (204 d) into this expression, and performing lengthy but straightforward algebra, we obtain
the form:

i I s dn 3r=r . | Or—r «)'r-rd
= lim s6r |, mycosqnint + oy sindyIn , , U for an opened crack  (AS)

and

O -r
= lim - I m.\/fr‘m dr—- nm. for a closed crack, (A6)
U]

Aea _(r

where

my = Wdnay+ A+ Byhy+ B yb))
my=MAnhy+Anb =By, — B a,)
my = Cue,+C a0y

and 4,4, B,,. C,p. ¢y, b, and ¢, are the coetlicients appearing in eqns (20a- d). With the aid of contour integration,
Willis (1971) showed that the integrat (AS) leads to

nt, +...Ill\
G =1 TN
cosh (qn)

which is reduced to (A6) when the oscillation disappears (7 = 0).

SAS 27:15-F¢



